Clinical Nutrition xxx (2018) 1-13

FISEVIER

Contents lists available at ScienceDirect

Clinical Nutrition

journal homepage: http://www.elsevier.com/locate/clnu

Meta-analyses

Effect of vegetarian dietary patterns on cardiometabolic risk factors in diabetes: A systematic review and meta-analysis of randomized controlled trials

Effie Viguiliouk ^{a, b}, Cyril WC. Kendall ^{a, b, c}, Hana Kahleová ^{d, e}, Dario Rahelić ^f, Jordi Salas-Salvadó ^{g, h}, Vivian L. Choo ^{a, b, i}, Sonia Blanco Mejia ^{a, b}, Sarah E. Stewart ^{a, b}, Lawrence A. Leiter ^{a, b, j, k, l}, David JA. Jenkins ^{a, b, j, k, l}, John L. Sievenpiper ^{a, b, k, l, *}

ARTICLE INFO

Article history: Received 7 December 2017 Accepted 31 May 2018

Keywords: Vegetarian Cardiometabolic risk Diabetes Systematic review Meta-analysis GRADE

SUMMARY

Background & aims: To summarize the evidence for the effect of vegetarian dietary patterns on glycemic control and other established cardiometabolic risk factors in individuals with diabetes, we conducted a systematic review and meta-analysis of randomized controlled trials.

Methods: We searched MEDLINE, EMBASE, and Cochrane databases through February 26, 2018 for randomized controlled trials ≥ 3 weeks assessing the effect of vegetarian dietary patterns in individuals with diabetes. The primary outcome was HbA_{1c}. Secondary outcomes included other markers of glycemic control, blood lipids, body weight/adiposity, and blood pressure. Two independent reviewers extracted relevant data and assessed risk of bias. Data were pooled by the generic inverse variance method and expressed as mean differences (MD) with 95% CIs. Heterogeneity was assessed (Cochran Q statistic) and quantified (I² statistic). The overall certainty of the evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach.

Results: Nine trials (n = 664 participants) met the eligibility criteria. Vegetarian dietary patterns significantly lowered HbA_{1c} (MD = -0.29% [95% CI: -0.45, -0.12%]), fasting glucose (MD = -0.56 mmol/L [95% CI: -0.99, -0.13 mmol/L]), LDL-C (MD = -0.12 mmol/L [95% CI: -0.20, -0.04 mmol/L]), non-HDL-C (MD = -0.13 mmol/L [95% CI: -0.26, -0.01 mmol/L]), body weight (MD = -2.15 kg [95% CI: -2.95, -1.34 kg]), BMI (MD = -0.74 kg/m² [95% CI: -1.09, -0.39 kg/m²]) and waist circumference (MD = -2.86 cm [95% CI: -3.76, -1.96 cm]). There was no significant effect on fasting insulin, HDL-C, triglycerides or blood pressure. The overall certainty of evidence was moderate but was low for fasting insulin, triglycerides and waist circumference.

https://doi.org/10.1016/j.clnu.2018.05.032 0261-5614/© 2018 Published by Elsevier Ltd.

Please cite this article in press as: Viguiliouk E, et al., Effect of vegetarian dietary patterns on cardiometabolic risk factors in diabetes: A systematic review and meta-analysis of randomized controlled trials, Clinical Nutrition (2018), https://doi.org/10.1016/j.clnu.2018.05.032

^a Toronto 3D (Diet, Digestive Tract and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, Canada

^b Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada

^c College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada

^d Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czech Republic

^e Physicians Committee for Responsible Medicine, Washington, DC, USA

f Department of Endocrinology, Diabetes and Metabolic Diseases, Dubrava University Hospital, Zagreb, Croatia

g CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain

^h Human Nutrition Department, IISPV, Universitat Rovira i Virgili, Reus, Spain

ⁱ Cumming School of Medicine, University of Calgary, Calgary, Canada

^j Department of Medicine, University of Toronto, Toronto, Canada

k Division of Endocrinology & Metabolism, St. Michael's Hospital, Toronto, Canada

¹ Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada

Abbreviations: ESM, electronic supplementary material; GRADE, Grading of Recommendations Assessment, Development, and Evaluation; MD, mean difference.

^{*} Corresponding author. St. Michael's Hospital, #6137-61 Queen Street East, Toronto, ON, M5C 2T2, Canada. Fax: +1 416 867 7495. E-mail address: john.sievenpiper@utoronto.ca (LL. Sievenpiper).

50

51

53

54

55

56

57

58

59

60

61

62

63

64

E. Viguiliouk et al. / Clinical Nutrition xxx (2018) 1-13

Conclusion: Vegetarian dietary patterns improve glycemic control, LDL-C and non-HDL-C, body weight/ adiposity in individuals with diabetes, supporting their inclusion for diabetes management. More research is needed to improve our confidence in the estimates. ClinicalTrials.gov identifier: NCT02600377.

© 2018 Published by Elsevier Ltd.

67

68

73

75

76

77

78

79

80

81

82

83

84

85

86

87

88

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116 117

118

119

120

121

122

123

124

125

126

127

128 129

130

1. Introduction

Diet and lifestyle are the cornerstone of diabetes management [1-3]. Vegetarian dietary patterns, which are characterized by the omission of some or all animal products, have shown a wide range of health benefits. Several prospective cohort studies, many of which were conducted in Adventist populations, show that consuming a vegetarian dietary pattern is associated with a lower risk of type 2 diabetes [4-6], coronary heart disease [7-9], obesity [8,10], hypertension [11–13], cardiovascular mortality [14,15] and all-cause mortality [14]. These findings are consistent with several systematic reviews and meta-analyses of controlled trials which show vegetarian dietary patterns improve glycemic control [16], blood lipids [17], body weight [18,19] and blood pressure [20] in individuals with different metabolic phenotypes. Furthermore, systematic reviews and meta-analyses of prospective cohort studies show that increased consumption of red or processed meat is associated with an increased risk of type 2 diabetes [21–23], coronary heart disease [24], hypertension [25], stroke [24,26,27], cardiovascular mortality [28], and all-cause mortality [28,29].

Despite this evidence for benefit, diabetes guidelines vary in their recommendations for the use of vegetarian dietary patterns in diabetes management. Although the American Diabetes Association (ADA) and Diabetes Canada guidelines include recommendations for vegetarian dietary patterns for diabetes management [3,30], the evidence ratings for these recommendations indicate that further research is required [3,30], whereas the European Association for the Study of Diabetes (EASD) guidelines have not made any specific recommendations for vegetarian dietary patterns [31].

To update the recommendations for the role of vegetarian dietary patterns among other dietary patterns in the management of diabetes, the Diabetes and Nutrition Study Group (DNSG) of the EASD commissioned a series systematic review and meta-analyses using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. The present systematic review and meta-analysis using GRADE was conducted to address the question of whether the available evidence from randomized controlled trials of vegetarian dietary patterns in comparison with non-vegetarian dietary patterns shows advantages for glycemic control and other established cardiometabolic risk factors in individuals with diabetes.

2. Methods

We followed the Cochrane Handbook for Systematic Reviews of Interventions (version 5.1.0) for the planning and conduct of this meta-analysis [32]. Reporting followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [33] (ESM Table 1). The study protocol was registered at ClinicalTrials.gov (identifier, NCT02600377).

2.1. Data sources

We searched MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials through February 26, 2018 using a search strategy based on the PICO framework [34] (ESM Table 2). Manual searches of reference lists from included trials supplemented the electronic database searches.

2.2. Study selection

We included randomized controlled trials of ≥ 3 weeks follow-up duration comparing the effect of vegetarian dietary patterns (including vegan to lacto-ovo-vegetarian) with non-vegetarian dietary patterns on glycemic control and other established cardiometabolic risk factors in individuals with diabetes. No restrictions were placed on language. Studies were excluded if they were nonrandomized, <3 weeks follow-up duration, no vegetarian intervention, no non-vegetarian control, or no suitable outcome data.

2.3. Data extraction

Two investigators (EV and VLC, SBM or SES) independently reviewed and extracted relevant data from each included report. A standardized form was used to extract data on sample size, participant characteristics, study setting and design, level of feeding control, intervention and control arm, macronutrient composition of diets, energy balance, follow-up duration, funding source and outcome data. Authors were contacted for missing outcome data [35]. All discrepancies and disagreements were resolved through consensus.

2.4. Risk of bias assessment

Included trials were independently assessed for risk of bias using the Cochrane Risk of Bias Tool [32]. Assessment was done across 5 domains of bias (sequence generation, allocation concealment, blinding, incomplete outcome data and selective reporting). The risk of bias was assessed as either low (proper methods taken to reduce bias), high (improper methods creating bias) or unclear (insufficient information provided to determine the bias level). All discrepancies and disagreements were resolved through consensus or where necessary by a third author.

2.5. Outcomes

The primary outcome was HbA_{1c}. Secondary outcomes included other markers of glycemic control (fasting glucose and insulin), blood lipids (LDL-C, non-HDL-C, HDL-C, triglycerides), body weight/ adiposity (body weight, BMI, waist circumference), and blood pressure (systolic and diastolic blood pressure). When non-HDL-C values were not reported, they were derived by subtracting HDL-C from total cholesterol values with SDs derived from HDL-C and total cholesterol variance data using the variance sum law [36]. Mean differences (MDs) between the intervention and control arm and respective standard errors were extracted for each trial. If these were not provided they were derived from available data using published formulas [32]. MDs for change-from-baseline values were preferred over end values. If median data was provided they

75

76

77

78

79

80

81

82

83

84

85

86

87

88

97

98

99

100

101

102

103

104 105

106

107

44 45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

129

130

124

were converted to mean data using methods developed by Luo et al. [37].

2.6. Data syntheses

Primary analyses were conducted using Review Manager (Rev-Man), version 5.3 (Copenhagen, Denmark). Subgroup analyses and publication bias were conducted using STATA software, version 13.0 (College Station, TX, USA). Data were expressed as mean differences (MD) with 95% CIs and pooled using the generic inverse variance method with random effects models. Fixed effects model were used when data from <5 trials were available. Paired analyses were conducted for crossover trials [38] using a correlation coefficient of 0.5. To mitigate a unit-of-analysis error, the arms of trials with multiple intervention or control arms were combined to create a single pairwise comparison. Heterogeneity was assessed using the Cochran Qstatistic and quantified using the I²-statistic. Significance for heterogeneity was set at P < 0.10 with an $I^2 > 50\%$ considered to be evidence of substantial heterogeneity [32]. Sources of heterogeneity were explored using sensitivity and subgroup analyses. Sensitivity analyses were performed in which each individual trial was removed from the meta-analysis and the effect size recalculated to determine whether a single trial exerted an undue influence. Sensitivity analyses were also performed using correlation coefficients of 0.25 and 0.75 to determine whether the overall results were robust to the use of different correlation coefficients in crossover trials. A post-hoc sensitivity analysis for HDL-C was conducted in which analyses were restricted to trials with <5% energy (E) difference in total fat between the intervention and control arms. If >10 trials were available, then a priori subgroup analyses were conducted using metaregression by baseline values, study design, follow-up, comparator arm, risk of bias and diabetes duration [39,40]. If >10 trials were available, then we also assessed publication bias by visual inspection of funnel plots and formal testing by the Egger and Begg tests [32,41].

2.7. Grading of the evidence

The GRADE approach was used to assess the certainty of the evidence [42–54]. Evidence was graded as high, moderate, low, or very low quality. Randomized controlled trials started at high quality by default and were downgraded based on the following pre-specified criteria: risk of bias (weight of trials showing risk of bias by the Cochrane Risk of Bias Tool), inconsistency (substantial unexplained inter-study heterogeneity, $I^2 > 50\%$ and P < 0.10), indirectness (presence of factors that limit the generalizability of the results), imprecision (the 95% CI for effect estimates were wide or cross minimally important differences [MIDs] for benefit or harm), and publication bias (significant evidence of small-study effects).

3. Results

3.1. Search results

Figure 1 shows the literature search and selection process. We identified a total of 6498 reports, 6395 of which were excluded based on review of titles and/or abstracts. The remaining 103 reports were retrieved and reviewed in full, of which 94 were excluded. A total of 9 reports containing data for 9 trial comparisons involving 664 participants with diabetes met the eligibility criteria and were included in the final analyses [35,55–62].

3.2. Trial characteristics

Table 1 shows the characteristics of the 9 included trials. All trials were conducted in outpatient settings, with more than half conducted in the United States [56,57,59,60,62] and one each in Greece [55], Brazil [58], Czech Republic [35], and Korea [61]. Trials had a median follow-up duration of 12 weeks (range: 4-74 weeks), an approximately equal distribution of men and women (median % women: 53%, range: 18-83%), and more than half used a parallel design (6 trials). Most participants had type 2 diabetes (99%), were middle-aged (median age: 56 years, range: 32-61 years), overweight or obese (median BMI: 34 kg/m^2 , range: $23-35 \text{ kg/m}^2$) and some or most were taking oral antihyperglycemic agents [35,56–62], insulin [55,56,58,59,61], lipid-lowering agents [35,56,57,59-62], and/or antihypertensive agents [35,56-61]. Mean diabetes duration varied from 7 to 9.5 years [57,59,61] for those with type 2 diabetes and before the onset of 30 years of age for those with type 1 diabetes [55], otherwise it was unspecified [35,56,58,60,62]. Median baseline (range) values for each outcome were as follow: HbA_{1c}, 7.6% (6.7–8.2%); fasting glucose, 8.5 mmol/L (7.0-10.3 mmol/L); fasting insulin, 105 pmol/L (not applicable); LDL-C, 2.7 mmol/L (1.9-3.4 mmol/L); HDL-C, 1.2 mmol/L (0.9–1.5 mmol/L); non-HDL-C, 3.7 mmol/L (2.6–4.3 mmol/L); triglycerides, 1.7 mmol/L (1.4–2.2 mmol/L); body weight, 97.5 kg (96.5–102.3 kg); BMI, 34.4 kg/m^2 (23.5–35.1 kg/m²); waist circumference, 111.6 cm (83.7-113.8 cm); systolic blood pressure, 130.1 mmHg (123.4–145 mmHg); and diastolic blood pressure, 82.0 mmHg (76.9-85 mmHg).

Macronutrient composition of the intervention and control arms varied across trials. Across intervention arms, the median (range) intake values reported were: carbohydrate, 60% E (49–77.5% E); protein, 15% E (12–17% E); fat, 25% E (10–34% E); saturated fat, 5.1% E (1.6–8.8% E); and fiber, 28.3 g/d (12.6–39 g/d), and across control arms they were: carbohydrate, 50% E (41–65% E). protein, 19% E (16–21.5% E), fat, 30% E (19–37% E), saturated fat, 8.5% E (4.4-11.6% E); and fiber, 20 g/d (7.7-39 g/d). For the purpose of dietary recommendations, we rescaled the macronutrient composition for those trials whose macronutrients did not sum to 100%, which resulted in the following mean macronutrient compositions across intervention arms – 62:14:23 and across control arms - 50:19:31 (carbohydrate:protein:fat, %). Feeding control varied across trials: metabolic control (2 trials), supplemental control (2 trials) and dietary advice (4 trials); otherwise it was unspecified (1 trial). Four trials had a neutral energy balance [55,57,58,60], 1 trial had a negative energy balance [35] and the remainder of the trials were not designed to be isocaloric [56,59,61,62]. The majority of trials were funded by some form of agency or agency alone (8 trials) or it was unspecified (1 trial).

3.3. Risk of bias

ESM Figs. 1–5 show the summary and individual Cochrane Risk of Bias assessments of the included trials. The majority of trials were judged as having unclear or low risk of bias across domains.

3.4. Effect of vegetarian dietary patterns on glycemic control

3.4.1. HbA_{1c}

Figure 2 and ESM Fig. 2a show the effect of vegetarian dietary patterns on HbA_{1c}. In 8 trials involving 378 participants with type 1 diabetes (n = 9) and type 2 diabetes (n = 369), a significant reduction in HbA_{1c} was observed compared to control diets (MD = -0.29% [95% CI: -0.45, -0.12%], P = 0.0006) with no evidence of inter-study heterogeneity ($I^2 = 14\%$, P = 0.32).

3.4.2. Fasting glucose

Figure 2 and ESM Fig. 2b show the effect of vegetarian dietary patterns on fasting glucose. In 6 trials involving 313 participants with type 2 diabetes, a significant reduction in fasting glucose was observed compared to control diets (MD = -0.56 mmol/L [95%

E. Viguiliouk et al. / Clinical Nutrition xxx (2018) 1-13

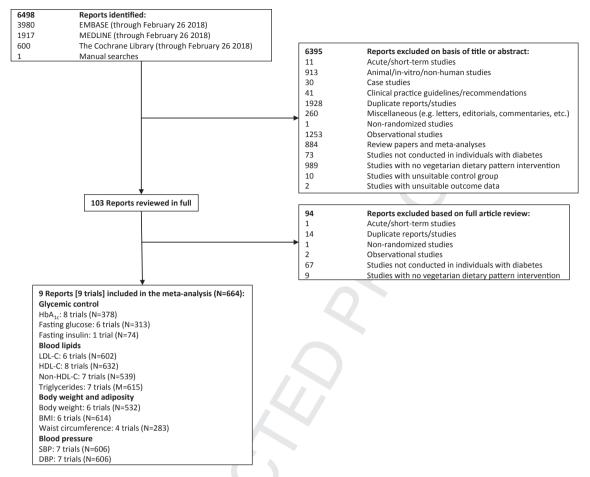


Fig. 1. Flow of the literature for the effect of vegetarian dietary patterns on cardiometabolic risk factors in diabetes. DBP = diastolic blood pressure; SBP = systolic blood pressure.

CI: -0.99, -0.13 mmol/L], P = 0.01) with no evidence of inter-study heterogeneity ($I^2 = 0\%$, P = 0.56). The trial by Kontessis et al. [55], which met the inclusion criteria, was not included in the primary analysis due to implausible variance data that could not be verified with the study authors. Omission of this trial did not alter the direction or significance of the pooled effect estimate or the evidence of inter-study heterogeneity.

3.4.3. Fasting insulin

Only one trial reported data for fasting insulin, which showed vegetarian dietary patterns did not significantly alter fasting insulin compared to the control diet (MD = -7.92 pmol/L [95% CI: -27.92, 12.08 pmol/L], P = 0.44) in 74 participants with type 2 diabetes [35].

3.5. Effect of vegetarian dietary patterns on blood lipids

3.5.1. LDL-C

Figure 2 and ESM Fig. 3a show the effect of vegetarian dietary patterns on LDL-C. In 6 trials involving 602 participants with type 2 diabetes, a significant reduction in LDL-C was observed compared to control diets (MD = -0.12 mmol/L [95% CI: -0.20, -0.04 mmol/L], P = 0.002) with no evidence of inter-study heterogeneity ($I^2 = 0\%$, P = 0.54).

3.5.2. HDL-C

Figure 2 and ESM Fig. 3b show the effect of vegetarian dietary patterns on HDL-C. In 8 trials involving 632 participants with type 2 diabetes, vegetarian dietary patterns did not significantly alter

HDL-C compared to control diets (MD = -0.03 mmol/L [95% CI: -0.08, 0.02 mmol/L], P = 0.19) with evidence of substantial inter-study heterogeneity ($I^2 = 66\%$, P = 0.004).

3.5.3. Non-HDL-C

Figure 2 and ESM Fig. 3c show the effect of vegetarian dietary patterns on non-HDL-C. In 7 trials involving 539 participants with type 2 diabetes, a significant reduction in non-HDL-C was observed compared to control diets (MD = -0.13 mmol/L [95% CI: -0.26, -0.01 mmol/L], P = 0.03) with no evidence of inter-study heterogeneity (I² = 0%, P = 0.44).

3.5.4. Triglycerides

Figure 2 and ESM Fig. 3d show the effect of vegetarian dietary patterns on triglycerides. In 7 trials involving 615 participants with type 2 diabetes, vegetarian dietary patterns did not significantly alter triglycerides compared to control diets (MD = 0.14 mmol/L [95% CI: -0.10, 0.38 mmol/L], P = 0.26) with evidence of substantial inter-study heterogeneity ($I^2 = 71\%$, P = 0.002).

3.6. Effect of vegetarian dietary patterns on body weight and adiposity

3.6.1. Body weight

Figure 2 and ESM Fig. 4a show the effect of vegetarian dietary patterns on body weight. In 6 trials involving 532 participants with type 2 diabetes, a significant reduction in body weight was observed compared to control diets (MD = -2.15 kg [95%)

Table 1Trial characteristics.

itudy, year Reference]	Participants	Age, ^a y	Baseline BMI or body weight ^{a,b}	Setting ^c	Design	Feeding control ^d	Intervention diet	Control diet	Macronutrient composition (CHO:PRO:FAT) ^e , %E	Energy balance ^f	Follow- up duration, wks	Funding sources
Contessis et al. 1995	9 T1DM (7W, 2M)	32 (20-48) ^h	23.8 (20.6–27.8)	OP, GRC	С	NR		_	_	Neutral	4	NR
ntervention			kg/m ^{2h}				Vegetable		~49:17:34			
Control							protein diet	Animal protein	~41:19:37			
Nicholson et al. 1999 ntervention	11 T2DM (5W, 6M) 7 (3W, 4M)	51 (34–62)	96.7 (13.3) kg	OP, USA	P	Supp	Low-fat vegan	diet	75:14:11	Neutral ⁱ	12	Agency
Control	4 (2W, 2M)	60 (51–74)	97.0 (22.9) kg				diet	Conventional	51:18:31			
Vheeler et al. 2002	17 T2DM (3W, 14M)	56 (12.4)	33.1 (5.8) kg/m ²	OP, USA	С	Met		low-fat diet		Neutral	6	Agency
ntervention							Plant-based		53:17:30			Industr
Control							protein diet	Animal-based protein diet	53:17:30			
le Mello et al. 2006 ntervention	17 T2DM (3W, 14M)	59 (11)	26.2 (2.6) kg/m ²	OP, BRA	С	DA	Lacto-vegetarian	protein diet	59:12:30	Neutral	4	Agency
Control Control							low-protein diet	Usual diet Usual diet + all meat replaced with chicken	47:22:31 50:21:29			
Sarnard et al. 2009 ntervention	99 T2DM (60W, 39M) 49 (27W, 22M)	56.7 (9.8)	33.9 (7.8) kg/m ²	OP, USA	P	DA	Low-fat vegan		66:15:22	Neutral ^j	74	Agency
Control	50 (33W, 17M)	54.6 (10.2)	35.9 (7.0) kg/m ²				diet	Conventional diabetes diet (2003 ADA)	47:21:34			
Cahleova et al. 2011 Intervention Control	74 T2DM (39W, 25M) 37 (20W, 17M) 37 (19W, 18M)	54.6 (7.8) 57.7 (4.9)	35.1 (6.1) kg/m ² 35.0 (4.6) kg/m ²	OP, CZE	P	Met	Vegetarian diet	Conventional diabetes diet (DNSG of the EASD)	60:15:25 50:20:30	Negative	24	Agency
Mishra et al. 2013	291 T2DM (242W, 50M)			OP, USA	P	Supp		EASD)		Neutral ^k	18	Agency
ntervention	142 (110W, 32M)	44.3 (15.3)	34.7 (7.1) kg/m ²				Low-fat vegan diet		57:15:31			
ontrol ee et al. 2016 ^l ntervention ontrol	149 (132W, 18M) 106 T2DM 53 53	46.1 (13.6) 57.5 (7.7) 58.3 (7.0)	35.3 (8.5) kg/m ² 23.9 (3.4) kg/m ² 23.1 (2.4) kg/m ²	OP, KOR	P	DA	Vegan diet	Usual diet Conventional diabetes diet (2011 KDA)	48:17:37 72:14:19 65:16:19	Neutral ^m	12	Agency

E. Viguiliouk et al. / Clinical Nutrition xxx (2018) 1-13

ARTICLE IN PRES

Table I (continued)												
Study, year [Reference]	Participants	Age, ^a y	Baseline BMI or body weight ^{a,b}	Setting ^c	Design	Feeding control ^d	Intervention diet	Control diet	Macronutrient composition (CHO:PRO:FAT) [©] %E		Follow- up duration wks	Funding sources ^g
Rarnard et al. 2018	40 T2DM			OP LISA	D D	DA	_		_	Neutraln	20	Agency

Low-fat, low

glycemic index vegan diet

Portion-

controlled diet

78:13:10

50:21:30

1900x

ADA = American Diabetes Association; C = crossover; CHO = carbohydrate; DA = dietary advice; DNSG = Diabetes and Nutrition Study Group; EASD = European Association for the Study of Diabetes; KDA = Korean Diabetes Association; M = men; Met = metabolic feeding control; OP = outpatient; NR = not reported; P = parallel; PRO = protein; Supp = supplemental feeling control; T1DM = type 1 diabetes mellitus; T2DM = type 2 diabetes mellitus; W = women; wks = weeks; y = years; %E = percent energy.

^a Values reported as mean (SD or range).

19

Intervention

Control

- ^b Baseline body weight values are only reported when no data on BMI were available.
- ^c Countries are abbreviated using ISO 3166-1 alpha-3 codes (three letter country codes defined in ISO 3166-1).

61 (30-75)

- d Metabolic feeding control (Met) is the provision of all meals and foods consumed during the study under controlled conditions. Supplemental feeding control (Supp) is the provision of some meals and foods consumed during the study. Dietary advice (DA) is the provision of counseling on the appropriate intervention and control diets.
- e Planned macronutrient composition of intervention and control diets. End of study values measuring energy from carbohydrates, fat and protein are reported only if the study did not report or design diets to have a planned macronutrient composition. Numbers preceded by "~" were calculated using relevant data provided by the study.
- f Negative energy balance refers to a deficit in normal energy intake and/or intake below energy requirements. Neutral energy balance refers to the maintenance of usual energy intake and/or meeting energy requirements. Positive energy balance refers to consuming additional energy (kcal) above what is normally consumed and/or intake above energy requirements.
 - g Agency funding is that from government, university, or not-for-profit sources. Industry funding is that from trade organizations that obtain revenue from the sale of products.
 - h Reported as median (range).
- i Study explicitly stated that the intervention and control diet were not designed to be isocaloric given that the vegan diet was much lower in fat.

34.9 (6.54) kg/m²

33.0 (5.96) kg/m²

- J Participants in the intervention arm had no restriction on energy intake. Participants in the control arm with a BMI > 25 kg/m² were prescribed energy deficits of 500–1000 kcal.
- k Participants in the intervention arm had no restriction on energy intake. Participants in the control arm made no dietary changes and were given no dietary guidance.
- All data reported in this table are based on n = 93 (completers).
- m Participants in the intervention arm had no restriction on energy intake. Participants in the control arm were asked to restrict their individualized daily energy intake based on body weight, physical activity, need for weight control, and compliance.

ⁿ Participants in the intervention arm had no restriction on energy intake. Participants in the control arm were prescribed energy limits needed for weight loss (typically a deficit of 500 calories/day).

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

60

61

62

63

64

Fig. 2. Forest plot of pooled effect estimates of the effect of vegetarian dietary patterns on cardiometabolic risk factors in diabetes in randomized controlled trials. Data are expressed as weighted mean differences with 95% Cls using the generic inverse-variance method modeled by random effects (\geq 5 trials available) or fixed effects (<5 trials available). To allow the pooled effect estimates for each end point to be displayed on the same axis, mean differences were transformed to standardized mean differences (SMDs). Pseudo-95% Cls for each transformed SMD were derived directly from the original mean difference and 95% Cl. Paired analyses were applied to all crossover trials. Inter-study heterogeneity was tested by the Cochran Q-statistic and quantified by l^2 at a significance level of P < 0.10. DBP = diastolic blood pressure; MD = mean difference; N = number of participants; NA = not applicable; SBP = systolic blood pressure; SMD = standardized mean difference.

CI: -2.95, -1.34 kg], P < 0.00001) with no evidence of inter-study heterogeneity ($I^2 = 21\%$, P = 0.28).

3.6.2. BMI

Figure 2 and ESM Fig. 4b show the effect of vegetarian dietary patterns on BMI. In 6 trials involving 614 participants with type 2 diabetes, a significant reduction in BMI was observed compared to control diets (MD = -0.74 kg/m^2 [95% CI: -1.09, -0.39 kg/m^2], P < 0.0001) with evidence of substantial inter-study heterogeneity $(I^2 = 60\%, P = 0.03).$

3.6.3. Waist circumference

Figure 2 and ESM Fig. 4c show the effect of vegetarian dietary patterns on waist circumference. In 4 trials involving 283 participants with type 2 diabetes, a significant reduction in waist circumference was observed compared to control diets (MD = -2.86 cm [95% CI: -3.76, -1.96 cm], P < 0.00001) with noevidence of inter-study heterogeneity ($I^2=48\%$, P=0.12).

3.7. Effect of vegetarian dietary patterns on blood pressure

3.7.1. Systolic blood pressure

Figure 2 and ESM Fig. 5a show the effect of vegetarian dietary patterns on systolic blood pressure. In 7 trials involving 606 participants with type 2 diabetes, vegetarian dietary patterns did not significantly alter systolic blood pressure compared to control diets (MD = 0.10 mmHg [95% CI: -2.33, 2.52 mmHg], P = 0.94) with no evidence of inter-study heterogeneity ($I^2 = 35\%$, P = 0.16).

3.7.2. Diastolic blood pressure

Figure 2 and ESM Fig. 5b show the effect of vegetarian dietary patterns on diastolic blood pressure. In 7 trials involving 606 participants with type 2 diabetes, vegetarian dietary patterns did not significantly alter diastolic blood pressure compared to control diets (MD = 0.53 mmHg [95% CI: -0.50, 1.57 mmHg], P = 0.31) with no evidence of inter-study heterogeneity ($I^2 = 0\%$, P = 0.46).

3.8. Sensitivity and subgroup analyses

ESM Table 3 shows select sensitivity analyses in which systematic removal of individual trials altered the results. The significance was lost for fasting glucose by the removal of Lee at al. [61], LDL-C by the removal of Mishra et al. [60], and non-HDL by the removal of several trials [35,57-60], although the pooled effect estimates still favored vegetarian dietary patterns in all cases. For triglycerides the removal of Kahleova et al. [35] changed the pooled effect estimate from non-significant to a significant increase. The evidence of substantial heterogeneity for BMI was partially explained by the removal of Mishra et al. [60] and fully explained by the removal of Lee et al., 2016 [61]. For waist circumference removal of Barnard et al. [59] changed the heterogeneity from nonsignificant to significant.

ESM Table 4 shows sensitivity analyses in which we used different correlation coefficients (0.25 and 0.75) for paired analyses of crossover trials. Neither of the correlation coefficients altered the significance of the pooled effect estimates or the evidence for heterogeneity for any outcome, with the exception of waist circumference, where a 0.75 correlation coefficient changed the heterogeneity from non-significant to significant.

Post hoc sensitivity analyses for HDL-C in which analyses were restricted to trials with <5% energy difference in total fat between the intervention and control arms [57,58,61] decreased the evidence for heterogeneity (residual $I^2 = 0\%$, P = 0.54) without altering the results (MD = 0.04 mmol/L [95% CI: -0.01, 0.00 mmol/L], P = 0.15).

Subgroup analyses were not conducted for any outcome as <10 trials were available.

Please cite this article in press as: Viguiliouk E, et al., Effect of vegetarian dietary patterns on cardiometabolic risk factors in diabetes: A systematic review and meta-analysis of randomized controlled trials, Clinical Nutrition (2018), https://doi.org/10.1016/j.clnu.2018.05.032

E. Viguiliouk et al. / Clinical Nutrition xxx (2018) 1-13

Table 2 GRADE assessments

Quality assessi	ment*	Effect	Quality					
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	MD [95% CIs]	
Glycemic cont	trol							
HbA_{1c} , %								
8	Randomized trials	Not serious ^a	Not serious	Not serious	Serious ^b	None	-0.29 [-0.45 , -0.12]	$\oplus \oplus \oplus \bigcirc$ Moderate
Fasting glucose								
6	Randomized trials	Not serious	Not serious	Not serious	Serious ^c	None	-0.56 [-0.99 , -0.13]	$\oplus \oplus \oplus \bigcirc$ Moderate
Fasting insulin,								
1	Randomized trials	Not serious	Not seriousd	Serious ^e	Serious ^f	None	-7.92 [-27.92, 12.08]	$\oplus \oplus \bigcirc \bigcirc$ Low
Blood lipids								
LDL-C, mmol/L					a			
6	Randomized trials	Not serious	Not serious	Not serious	Serious ^g	None	-0.12 [-0.20 , -0.04]	$\oplus \oplus \oplus \bigcirc$ Moderate
HDL-C, mmol/		Nick contains	Serious ^h	Nichonicon	Managara	Men	0.02 [0.00 0.02]	a a a a a Modernto
8 Non-UDI C	Randomized trials	Not serious	Serious	Not serious	Not serious	None	-0.03 [-0.08, 0.03]	$\oplus \oplus \oplus \bigcirc$ Moderate
Non-HDL-C, m	Randomized trials	Not serious	Not serious	Not serious	Serious ⁱ	None	-0.13 [-0.26, -0.01]	⊕ ⊕ ⊕ ∩ Moderate
Triglycerides, n		Not serious	NOT SELIOUS	Not serious	Serious	None	-0.13 [-0.26, -0.01]	### Winder are
Trigiyceriaes, ii	Randomized trials	Not serious	Serious ^j	Not serious	Serious ^k	None	0.14 [-0.10, 0.38]	$\oplus \oplus \oplus \bigcirc$ Low
Body weight		NOT SELIOUS	Serious	NOT SELIOUS	Serious	None	0.14 [-0.10, 0.38]	⊕ ⊕ ⊕ ⊕ Crow
Body weight, k								
6	Randomized trials	Not serious	Not serious	Serious ¹	Not serious	None	-2.15[-2.95, -1.34]	⊕ ⊕ ⊕ ∩ Moderate
BMI, kg/m ²	randoniibea triaib	riot berious	1100 5011045	5011045	riot scrious	110110	2.15 (2.55, 1.51)	o o o o moderate
6	Randomized trials	Not serious	Not serious ^m	Serious ^l	Not serious	None	-0.74[-1.09, -0.39]	⊕ ⊕ ⊕ ⊜ Moderate
Waist circumfe	rence, cm							0
4	Randomized trials	Not serious	Not serious	Serious ^l	Serious ⁿ	None	-2.86[-3.76, -1.96]	$\oplus \oplus \oplus \bigcirc \bigcirc$ Low
Blood pressur	e							
SBP and DBP, r	nmHg ^o							
7	Randomized trials	Not serious	Not serious	Not serious	Serious ^p	None	SBP: 0.10 [-2.33, 2.52] DBP: 0.53 [-0.50, 1.57]	$\oplus \oplus \oplus \bigcirc$ Moderate

DBP = diastolic blood pressure; MD = mean difference; SBP = systolic blood pressure.

*Since all included studies were randomized controlled trials, the certainty of the evidence was graded as high for all outcomes by default and then downgraded based on prespecified criteria. Risk of Bias - Downgraded if the majority of studies were considered to be at high risk of bias. Inconsistency - Downgraded if there was substantial unexplained heterogeneity ($I^2 > 50\%$, P < 0.10) that was unexplained by any *a priori* sensitivity or subgroup analyses. Indirectness — Downgraded if there were factors present relating to the participants, interventions, or outcomes that limited the generalizability of the results. Imprecision – Downgraded if the 95% confidence interval (95% CI) crossed the minimally important difference (MID) for benefit or harm. MIDs used for each outcome were: 0.3% for HbA_{1c} [70], 0.5 mmol/L for fasting glucose, 5 pmol/L for fasting insulin, 0.1 mmol/L for blood lipids, 0.5 kg for body weight [81], 0.2 kg/m² for BMI, 2 cm for waist circumference, and 2 mmHg for blood pressure.

- No serious risk of bias for the effect of vegetarian dietary patterns on HbA_{1c} even though two trials [56,59] contributing 25% weight were high risk for attrition bias (incomplete outcome data) and one trial [61] contributing 37% weight was high risk for selection (allocation concealment) and performance bias (blinding of participants and personnel).
- b Serious imprecision for the effect of vegetarian dietary patterns on HbA $_{1c}$, as the 95% Cls (-0.45, -0.12%) overlap with the minimally important difference for clinical benefit (-0.3%).
- Serious imprecision for the effect of vegetarian dietary patterns on fasting glucose, as the 95% Cls (-0.99, -0.13 mmol/L) overlap with the minimally important difference for clinical benefit (-0.5 mmol/L).
- Not able to assess inconsistency for fasting insulin as only 1 trial was available for inclusion.
- e Serious indirectness for the effect of vegetarian dietary patterns on fasting insulin, as only 1 trial in 74 participants with type 2 diabetes was available for analysis (Kahleova
- Serious imprecision for the effect of vegetarian dietary patterns on fasting insulin, as the 95% CIs (-27.92, 12.08 pmol/L) include the minimally important difference for both clinically important benefit (-5 pmol/L) and harm (5 pmol/L).
- g Serious imprecision for the effect of vegetarian dietary patterns on LDL-C, as the 95% CIs (-0.20, -0.04 mmol/L) overlap with the minimally important difference for
 - h Serious inconsistency for the effect of vegetarian dietary patterns on HDL-C, as $I^2 = 66\%$ and P = 0.004.
- Serious imprecision for the effect of vegetarian dietary patterns on non-HDL-C, as the 95% Cls (-0.26, -0.01 mmol/L) overlap with the minimally important difference for clinical benefit (-0.1 mmol/L).
- Serious inconsistency for vegetarian diets and triglycerides, as $I^2 = 71\%$ and P = 0.002.
- Serious imprecision for the effect of vegetarian dietary patterns on triglycerides, as the 95% Cls (-0.10, 0.38 mmol/L) overlap with the minimally important difference for clinical harm (0.1 mmol/L).
- Serious indirectness for the effect of vegetarian dietary patterns on body weight and adiposity, as majority of the trials (5/6 trials for body weight and BMI and 3/4 trials for waist circumference) had a follow-up duration <1 year.
- Although there is evidence of substantial heterogeneity for the effect of vegetarian dietary patterns on BMI (I² = 60%, P = 0.03), removal of 2 trials (Mishra et al., 2013 and Lee et al., 2016) explained some or all of the heterogeneity ($I^2 = 40\%$, P = 0.15 and $I^2 = 0\%$, P = 0.60, respectively).
- ⁿ Serious imprecision for the effect of vegetarian dietary patterns on waist circumference, as the 95% CIs (-4.06, -1.34 cm) overlap with the minimally important difference for clinical benefit (-2 cm).
- Systolic and diastolic blood pressure were combined into one quality assessment for blood pressure.
- P Serious imprecision for the effect of vegetarian dietary patterns on systolic blood pressure, as the 95% CIs (-2.33, 2.52 mmHg) include the minimally important difference for both clinically important benefit (-2 mmHg) and harm (2 mmHg).

3.9. Publication bias

3.10. GRADE assessment

Publication bias was not assessed for any outcome as <10 trials were available.

Table 2 shows a summary of the GRADE assessments of the overall quality of the evidence for the effect of vegetarian dietary

54

55

56

57

58

59

60

61

62

63

64

73

75

76 77

78 79

80

81

82

83

84

85

86

87

88

89

97

98

99

100

101

125

patterns on cardiometabolic risk factors. The evidence was graded as moderate quality for HbA_{1c}, fasting glucose, LDL-C, non-HDL-C, and blood pressure owing to a downgrade for imprecision; moderate quality for HDL-C owing to a downgrade for inconsistency; moderate quality for body weight and BMI owing to a downgrade for indirectness; low for fasting insulin and waist circumference owing to downgrades for imprecision and indirectness; and low for triglycerides owing to downgrades for inconsistency and imprecision.

4. Discussion

The present systematic review and meta-analysis of 9 randomized controlled trials including 664 predominantly middleaged, overweight or obese participants with type 2 diabetes controlled by medications (including oral antihyperglycemic agents, insulin, lipid-lowering agents and/or anti-hypertensive agents) showed that vegetarian dietary patterns in comparison with non-vegetarian dietary patterns have benefits for glycemic control and other established cardiometabolic risk factors over a median follow-up of 12 weeks. An improvement was observed in the primary outcome HbA_{1c} of 0.29%. Further improvements were observed in glycemic control as assessed by fasting glucose; blood lipids as assessed by LDL-C and non-HDL-C; and body weight/ adiposity as assessed by body weight, BMI and waist circumference. No significant effects were observed on fasting insulin, HDL-C, triglycerides and blood pressure.

4.1. Results in relation to other studies

Our findings extend those of previous systematic reviews and meta-analyses. The improvements in glycemic control seen in our systematic review and meta-analysis are in agreement with a previous systematic review and meta-analysis in individuals with type 2 diabetes, which showed vegetarian dietary patterns lowered HbA_{1c} and non-significantly lowered fasting glucose [16]. Although we found a significant lowering-effect on fasting glucose, this discrepancy can be explained by our inclusion of a new trial [61], confirmed by sensitivity analyses. Our findings for lipids were consistent with a previous systematic review and meta-analysis conducted in individuals with and without diabetes, which showed vegetarian dietary patterns lowered LDL-C and non-HDL-C, without significantly altering triglycerides [17]. A significant HDL-C decreasing-effect was also found. Although we did not find a significant HDL-C lowering-effect of vegetarian dietary patterns, the result was complicated by substantial heterogeneity. This inconsistency was explained in sensitivity analyses by differences in total fat intake between the intervention and control arms of trials. Our findings for body weight were comparable with 2 previous systematic reviews and meta-analyses [18,19] conducted in individuals with and without type 2 diabetes, both of which showed that vegetarian dietary patterns significantly lowered body weight. Lastly, our findings for blood pressure were inconsistent with a previous systematic review and meta-analysis of randomized controlled trials in people with and without diabetes, which showed significant reductions in systolic and diastolic blood pressure [20]. Although our findings showed no effect on blood pressure, this may be attributable to the entry criteria in the trials. The majority of the trials in the previous systematic review and metaanalysis included individuals who were pre-hypertensive or had stage 1 hypertension not on antihypertensive medications [20], whereas most of the trials in our systematic review and metaanalysis included individuals with type 2 diabetes who had wellcontrolled blood pressure (median blood pressure was 130.1/ 82 mmHg) on antihypertensive medications.

4.2. Potential mechanisms

Several potential mechanisms may explain the observed benefits of vegetarian dietary patterns on different cardiometabolic risk factors. Vegetarian dietary patterns are inherently lower in energy, which was observed in several included trials that placed no restriction on calorie intake [56.58–61]. This is mainly attributed to their lower fat and higher fiber content [63,64], which promotes weight loss and, in turn, improvements in glycemic control [2,65]. Vegetarian dietary patterns also consist of lower intakes of saturated fat and higher intakes of unsaturated fat, phytochemicals (e.g. phytosterols, phenolics, etc.), plant protein in place of animal protein, and low glycemic index foods. All of these components have individually shown beneficial effects on a wide range of cardiometabolic risk factors and their respective mechanisms have been described in greater detail in previously published reviews [66,67] and systematic reviews and meta-analyses [16-20,68].

4.3. Strengths and limitations

Our systematic review and meta-analysis had several strengths. These included a rigorous search and selection strategy that identified all available randomized controlled trials examining the effect of vegetarian dietary patterns on cardiometabolic risk factors in individuals with diabetes; inclusion of predominantly high quality randomized controlled trials, which give the greatest protection against bias: use of intention-to-treat data when available [59–61.66], which tend to provide more conservative pooled estimates [69]; and assessment of the overall quality of the evidence using the GRADE approach.

There were also several limitations of our systematic review and meta-analysis. First, there was evidence of serious imprecision in the pooled estimates across several outcomes. The 95% CIs were wide such that they could not rule out clinically important harm in the case of triglycerides and blood pressure and clinically trivial effects in the case of HbA_{1c}, fasting glucose, LDL-C, non-HDL-C, and waist circumference. There was also instability in the significance of the pooled effect estimates with the removal of single trials during sensitivity analyses resulting in the loss of significance for fasting glucose, LDL-C and non-HDL-C and gain in significance for triglycerides. Second, serious indirectness complicated the pooled estimates for body weight outcomes. Although Barnard et al. [59] was over 1 year, the median follow-up among the trials was just 3-months with all other trials \leq 6-months. This duration is considered of modest practical value to assess a sustained weightloss benefit, although we did consider it sufficient for assessing a meaningful effect on other cardiometabolic outcomes. Third, there was evidence of inconsistency in HDL-C. Sensitivity analyses showed that the lack of effect of vegetarian dietary patterns on HDL-C appears to depend on the level of fat intake, suggesting that the lack of effect on HDL-C may not apply to different macronutrient distribution ranges. Fourth, only 1 trial was conducted in individuals with type 1 diabetes. Although the glycemic and cardiometabolic benefits would not be expected to differ in this population, our findings remain most relevant to people with type 2 diabetes. Finally, the small number of available trials (<10 trials) meant that we were unable to conduct subgroup analyses and publication bias for any outcome.

Weighing these strengths and limitations, our GRADE assessments graded the overall evidence as low quality for fasting insulin, triglycerides and waist circumference and moderate quality for the remaining glycemic control (HbA_{1c}, fasting glucose), lipid (LDL-C, HDL-C, non-HDL-C), blood pressure, and body weight (body weight, BMI) outcomes.

68

73

75

76

77

78 79

80

81

82

83

84

85

86

87

88

89

97

98

99

100

101

102

103

104 105

106

107

108

109

110

111

112

113

114

115

116 117

118

119

120

121

122

123 124

125

126

127

128 129

130

10 11 12 13 14 15 16 17 18 19 21 23 27 31 32 33 34 35 37 38 41 42 43

20 36 39 40 44 45 46 48 49 50 51 53

55

56

57

58

59

60

61

62

64

65

E. Viguiliouk et al. / Clinical Nutrition xxx (2018) 1-13

4.4. Implications

 $Despite imprecision in the pooled estimate for HbA_{1c}, the observed \\$ reduction of 0.29%, although modest, meets the threshold of \geq 0.3% proposed by the U.S. Food and Drug Administration for the development of new antihyperglycemic medications for diabetes [70]. This clinically meaningful reduction was observed in the presence of oral antihyperglycemic agents, the use of which was reduced by individuals in several of the included trials [35,56,59], suggesting that vegetarian dietary patterns may reduce the need for medications and combined with standard therapy may be particularly advantageous for managing glycemic control in people with type 2 diabetes. This lowering in HbA_{1c} may also contribute to reducing the risk of major cardiovascular events, as demonstrated by previously published meta-analyses of randomized trials [71–73]. Given the demonstrated one-to-one relationship between LDL-Clowering and cardiovascular risk reduction [74,75], the ~5% observed reduction in LDL-C in our meta-analysis would also translate into a ~5% risk reduction in major cardiovascular events. These risk reductions are an important consideration given that coronary heart disease is the most important cause of premature death in individuals with diabetes [76]. Given that the prevalence of individuals following vegetarian dietary patterns in Europe and North America are low (approximately less than 10% of the population based on available data from national surveys) [77], there is an important opportunity for individuals with diabetes to adopt vegetarian dietary patterns and gain the observed glycemic and cardiometabolic benefits. Furthermore, vegetarian dietary patterns have been shown to be comparable to other therapeutic diets in terms of acceptability and adherence, suggesting their suitability for long term use [77,78]. Other implications of adopting vegetarian dietary patterns include their economic and environmental benefits, which may contribute to greater adoption and adherence [79,80].

5. Conclusion

In conclusion, vegetarian dietary patterns lead to improvements in glycemic control and other established cardiometabolic risk factors in predominantly middle-aged, overweight or obese participants with type 2 diabetes controlled by medications. Our confidence in the pooled estimates for these outcomes is moderate to low. Sources of uncertainty include serious imprecision in the pooled estimates for HbA_{1c}, fasting glucose, fasting insulin, LDL-C, non-HDL-C, triglycerides, and blood pressure; indirectness for fasting insulin and body weight and adiposity outcomes (body weight, BMI, waist circumference), and inconsistency for HDL-C and triglycerides. More research is likely to have an important influence on our confidence in the pooled estimates. More high quality randomized trials testing the effect of vegetarian dietary patterns on glycemic control and other established cardiometabolic outcomes are needed to address the uncertainties, to better understand the impact in individuals with type 1 diabetes and whether there are differences between the different forms of vegetarianism. There is also a need for large randomized trials that extend beyond intermediate biomarkers and assess more patientimportant clinical outcomes such as cardiovascular disease, nephropathy, retinopathy, and mortality in people with diabetes.

Funding

The Diabetes and Nutrition Study Group (DNSG) of the European Association for the Study of Diabetes (EASD) commissioned this systematic review and meta-analysis and provided funding and logistical support for meetings as part of their development of clinical practice guidelines for nutrition therapy. This work was also supported by the Canadian Institutes of Health Research (funding reference number, 129920) through the Canada-wide Human Nutrition Trialists' Network (NTN). The Diet, Digestive tract, and Disease (3-D) Centre, funded through the Canada Foundation for Innovation (CFI) and the Ministry of Research and Innovation's Ontario Research Fund (ORF), provided the infrastructure for the conduct of this project. Effie Viguiliouk was supported by a Toronto 3D Knowledge Synthesis and Clinical Trials foundation Internship Award. David IA Jenkins was funded by the Government of Canada through the Canada Research Chair Endowment, John L Sievenpiper was funded by a PSI Graham Farguharson Knowledge Translation Fellowship, Canadian Diabetes Association Clinician Scientist award, CIHR INMD/CNS New Investigator Partnership Prize, and Banting & Best Diabetes Centre Sun Life Financial New Investigator Award. With the exception of the Diabetes and Nutrition Study Group (DNSG) of the European Association for the Study of Diabetes (EASD) guidelines committee, none of the sponsors had a role in any aspect of the present study, including design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, approval of the manuscript or decision to publish. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Conflicts of interest

Cyril WC Kendall has received research support from the Advanced Foods and Material Network, Agrifoods and Agriculture Canada, the Almond Board of California, the American Pistachio Growers, Barilla, the California Strawberry Commission, the Calorie Control Council, CIHR, the Canola Council of Canada, the Coca-Cola Company (investigator initiated, unrestricted grant), Hain Celestial, the International Tree Nut Council Nutrition Research and Education Foundation, Kellogg, Kraft, Loblaw Companies Ltd., Orafti, Pulse Canada, Saskatchewan Pulse Growers, Solae and Unilever. He has received travel funding, consultant fees and/or honoraria from Abbott Laboratories, the Almond Board of California, the American Peanut Council, the American Pistachio Growers, Barilla, Bayer, the Canola Council of Canada, the Coca-Cola Company, Danone, General Mills, the International Tree Nut Council Nutrition Research and Education Foundation, Kellogg, Loblaw Companies Ltd., the Nutrition Foundation of Italy, Oldways Preservation Trust, Orafti, Paramount Farms, the Peanut Institute, PepsiCo, Pulse Canada, Sabra Dipping Co., Saskatchewan Pulse Growers, Solae, Sun-Maid, Tate and Lyle, and Unilever. He is on the Dietary Guidelines Committee for the Diabetes Nutrition Study Group of the European Association for the Study of Diabetes and has served on the scientific advisory board for the Almond Board of California, the International Tree Nut Council, Oldways Preservation Trust, Paramount Farms and Pulse Canada.

Jordi Salas-Salvadó reports serving on the board of and receiving grant support through his institution from the International Nut and Dried Fruit Council, and Eroski Foundation. Reports serving in the Executive Committee of the Instituto Danone Spain. Has received research support from the Instituto de Salud Carlos III, Spain; Ministerio de Educación y Ciencia, Spain; Departament de Salut Pública de la Generalitat de Catalunya, Catalonia, Spain; European Commission. Has received research support from California Walnut Commission, Sacramento CA, USA; Patrimonio Comunal Olivarero, Spain; La Morella Nuts, Spain; and Borges S.A., Spain. Reports receiving consulting fees or travel expenses from Danone; California Walnut Commission, Eroski Foundation, Instituto Danone - Spain, Nuts for Life, Australian Nut Industry Council, Nestlé, Abbot Laboratories, and Font Vella Lanjarón. He is on the Clinical Practice Guidelines Expert Committee of the European Association for the study of Diabetes (EASD), and served in the

73

74

75

76

77

78 79

80

81

82

83

84

85

86

87

88

89

97

98

99

100

37

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

7 8 9

121

Scientific Committee of the Spanisch Food and Safety Agency, and the Spanish Federation of the Scientific Societies of Food, Nutrition and Dietetics. He is a member of the International Carbohydrate Quality Consortium (ICQC), and Executive Board Member of the Diabetes and Nutrition Study Group (DNSG) of the EASD.

Dario Rahelić has served as principal investigator or coinvestigator in clinical trials of AstraZeneca, Eli Lilly, MSD, Novo Nordisk, Sanofi Aventis, Solvay and Trophos, He has received honoraria for speaking or advisory board engagements and consulting fees from Abbott, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Eli Lilly, Lifescan – Johnson & Johnson, Novartis, Novo Nordisk, MSD, Merck Sharp & Dohme, Pfizer, Pliva, Roche, Salvus, Sanofi Aventis and Takeda.

David JA Jenkins has received research grants from Saskatchewan Pulse Growers, the Agricultural Bioproducts Innovation Program through the Pulse Research Network, the Advanced Foods and Material Network, Loblaw Companies Ltd., Unilever, Barilla, the Almond Board of California, Agriculture and Agri-food Canada, Pulse Canada, Kellogg's Company, Canada, Quaker Oats, Canada, Procter & Gamble Technical Centre Ltd., Bayer Consumer Care, Springfield, NJ, Pepsi/Quaker, International Nut & Dried Fruit (INC), Soy Foods Association of North America, the Coca-Cola Company (investigator initiated, unrestricted grant), Solae, Haine Celestial, the Sanitarium Company, Orafti, the International Tree Nut Council Nutrition Research and Education Foundation, the Peanut Institute, the Canola and Flax Councils of Canada, the Calorie Control Council (CCC), the CIHR, the Canada Foundation for Innovation and the Ontario Research Fund. He has received inkind supplies for trial as a research support from the Almond board of California, Walnut Council of California, American Peanut Council, Barilla, Unilever, Unico, Primo, Loblaw Companies, Quaker (Pepsico), Pristine Gourmet, Bunge Limited, Kellogg Canada, WhiteWave Foods. He has been on the speaker's panel, served on the scientific advisory board and/or received travel support and/or honoraria from the Almond Board of California, Canadian Agriculture Policy Institute, Loblaw Companies Ltd, the Griffin Hospital (for the development of the NuVal scoring system), the Coca-Cola Company, EPICURE, Danone, Diet Quality Photo Navigation (DQPN), FareWell, Verywell, True Health Initiative, Saskatchewan Pulse Growers, Sanitarium Company, Orafti, the Almond Board of California, the American Peanut Council, the International Tree Nut Council Nutrition Research and Education Foundation, the Peanut Institute, Herbalife International, Pacific Health Laboratories, Nutritional Fundamental for Health, Barilla, Metagenics, Bayer Consumer Care, Unilever Canada and Netherlands, Solae, Kellogg, Quaker Oats, Procter & Gamble, the Coca-Cola Company, the Griffin Hospital, Abbott Laboratories, the Canola Council of Canada, Dean Foods, the California Strawberry Commission, Haine Celestial, PepsiCo, the Alpro Foundation, Pioneer Hi-Bred International, DuPont Nutrition and Health, Spherix Consulting and WhiteWave Foods, the Advanced Foods and Material Network, the Canola and Flax Councils of Canada, the Nutritional Fundamentals for Health, Agri-Culture and Agri-Food Canada, the Canadian Agri-Food Policy Institute, Pulse Canada, the Saskatchewan Pulse Growers, the Soy Foods Association of North America, the Nutrition Foundation of Italy (NFI), Nutra-Source Diagnostics, the McDougall Program, the Toronto Knowledge Translation Group (St. Michael's Hospital), the Canadian College of Naturopathic Medicine, The Hospital for Sick Children, the Canadian Nutrition Society (CNS), the American Society of Nutrition (ASN), Arizona State University, Paolo Sorbini Foundation and the Institute of Nutrition, Metabolism and Diabetes. He received an honorarium from the United States Department of Agriculture to present the 2013 W.O. Atwater Memorial Lecture. He received the 2013 Award for Excellence in Research from the International Nut and Dried Fruit Council. He received funding and travel support from the Canadian Society of Endocrinology and Metabolism to produce mini cases for the Canadian Diabetes Association (CDA). He is a member of the International Carbohydrate Quality Consortium (ICQC). His wife, ALJ, is a director and partner of Glycemic Index Laboratories, Inc., and his sister received funding through a grant from the St. Michael's Hospital Foundation to develop a cookbook for one of his studies.

John L Sievenpiper has received research support from the Canadian Institutes of Health Research (CIHR), Canadian Diabetes Association (CDA), PSI Foundation, Calorie Control Council, Banting and Best Diabetes Centre (BBDC), American Society for Nutrition (ASN), Dr. Pepper Snapple Group (investigator initiated, unrestricted donation), INC International Nut and Dried Fruit Council, and The Tate and Lyle Nutritional Research Fund at the University of Toronto. He has received speaker fees and/or honoraria from the Canadian Diabetes Association (CDA), Canadian Nutrition Society (CNS), University of Alabama at Birmingham, Abbott Laboratories, Canadian Sugar Institute, Dr. Pepper Snapple Group, The Coca-Cola Company, Dairy Farmers of Canada, Nutrition Foundation of Italy (NFI), C3 Collaborating for Health, WhiteWave Foods, Rippe Lifestyle, mdBriefcase, Alberta Milk, FoodMinds LLC, Memac Ogilvy & Mather LLC, PepsiCo, and Pulse Canada. He has ad hoc consulting arrangements with Winston & Strawn LLP, Perkins Coie LLP, and Tate & Lyle. He is a member of the European Fruit Juice Association Scientific Expert Panel. He is on the Clinical Practice Guidelines Expert Committees of the Canadian Diabetes Association (CDA), European Association for the study of Diabetes (EASD), and Canadian Cardiovascular Society (CCS), as well as an expert writing panel of the American Society for Nutrition (ASN). He serves as an unpaid scientific advisor for the Food, Nutrition, and Safety Program (FNSP) and the Technical Committee on Carbohydrates of the International Life Science Institute (ILSI) North America. He is a member of the International Carbohydrate Quality Consortium (ICQC), Executive Board Member of the Diabetes and Nutrition Study Group (DNSG) of the EASD, and Director of the Toronto 3D Knowledge Synthesis and Clinical Trials foundation. His wife is an employee of Unilever Canada.

No competing interests were declared by Effie Viguiliouk, Hana Kahleová, Vivian L Choo, Sonia Blanco Mejia, Sarah E Stewart, and Lawrence A Leiter. There are no patents, products in development or marketed products to declare.

Author contributions

Study concept and design: EV, CWCK, HK, DR, JS-S, and JLS. Acquisition of data: EV, VLC, SES, SBM and JLS. Analysis and interpretation of data: EV, CWCK, VC, SS, HK, DR, JS-S, LAL, DJAJ, JLS. Drafting of the manuscript: EV. Critical revision of the manuscript for important intellectual content: EV, CWCK, VC, SS, HK, DR, IS-S, LAL, DJAJ, JLS. Final approval of the version to be published: EV, CWCK, VC, SS, HK, DR, JS-S, LAL, DJAJ, JLS. Study supervision: CWCK,

Acknowledgements

We wish to thank Teruko Kishibe of Li Ka Shing's International Healthcare Education Centre at St. Michael Hospital for her help in the development of the search strategy. Aspects of this work were presented at the International Diabetes Federation (IDF) World Diabetes Congress, Vancouver, Canada, Nov 30-Dec 4, 2015 and the 34th International Symposium on Diabetes and Nutrition, Prague, Czech Republic, Jun 29–Jul 1, 2016.

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

97

98

99

100

101

102

103

104

105

106

107

108

126

127

128

129

130

E. Viguiliouk et al. / Clinical Nutrition xxx (2018) 1-13

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.clnu.2018.05.032.

References

- [1] Knowler WC, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346(6):393-403.
- Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, et al., Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001;344(18):1343–50.
- Sievenpiper JL, et al. Nutrition therapy. Can J Diabetes 2018;42(Suppl 1):
- [4] Tonstad S, et al. Vegetarian diets and incidence of diabetes in the adventist health Study-2. Nutr Metabol Cardiovasc Dis 2013;23(4):292-9.
- Snowdon DA, Phillips RL. Does a vegetarian diet reduce the occurrence of diabetes? Am J Publ Health 1985;75(5):507-12.
- [6] Chiu THT, et al. Vegetarian diet, change in dietary patterns, and diabetes risk: a prospective study. Nutr Diabetes 2018;8(1):12.
- Dinu M, et al. Vegetarian, vegan diets and multiple health outcomes: a sys tematic review with meta-analysis of observational studies. Crit Rev Food Sci
- Crowe FL, Appleby P, Travis RC, Key TJ. Risk of hospitalization or death from ischemic heart disease among British vegetarians and nonvegetarians: results from the EPIC-Oxford cohort study. Am J Clin Nutr 2013;97(3):597-603.
- [9] Kwok CS, et al. Vegetarian diet, Seventh Day Adventists and risk of cardiovascular mortality: a systematic review and meta-analysis. Int J Cardiol 2014;176(3):680-6.
- [10] Chiu YF, Hsu C, Chiu TH, Lee CY, Liu TT, Tsao CK, et al. Cross-sectional and longitudinal comparisons of metabolic profiles between vegetarian and nonvegetarian subjects: a matched cohort study. Br J Nutr 2015;114(8):1313-20.
- Chuang SY, et al. Vegetarian diet reduces the risk of hypertension independent of abdominal obesity and inflammation: a prospective study. J Hypertens 2016;34(11):2164-71.
- [12] Pettersen BJ, Anousheh R, Fan J, Jaceldo-Siegl K, Fraser GE. Vegetarian diets and blood pressure among white subjects: results from the Adventist Health Study-2 (AHS-2). Publ Health Nutr 2012;15(10):1909-16.
- [13] Appleby PN, Davey G, Key TJ. Hypertension and blood pressure among meat eaters, fish eaters, vegetarians and vegans in EPIC-Oxford. Publ Health Nutr 2002;5(5):645-54.
- [14] Orlich MJ, et al. Vegetarian dietary patterns and mortality in adventist health study 2. JAMA Intern Med 2013;173(13):1230-8.
- [15] Huang T, et al. Cardiovascular disease mortality and cancer incidence in vegetarians: a meta-analysis and systematic review. Ann Nutr Metab 2012:60(4):233-40.
- [16] Yokoyama Y, et al. Vegetarian diets and glycemic control in diabetes: a systematic review and meta-analysis. Cardiovasc Diagn Ther 2014;4(5):373-82.
- Wang F, et al. Effects of vegetarian diets on blood lipids: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc 2015:4(10):e002408.
- [18] Barnard ND, Levin SM, Yokoyama Y. A systematic review and meta-analysis of changes in body weight in clinical trials of vegetarian diets. J Acad Nutr Diet 2015:115(6):954-69.
- [19] Huang RY, et al. Vegetarian diets and weight reduction: a meta-analysis of randomized controlled trials. J Gen Intern Med 2016;31(1):109-16.
- Yokoyama Y, et al. Vegetarian diets and blood pressure: a meta-analysis. JAMA Intern Med 2014;174(4):577-87.
- [21] Pan A, et al. Changes in red meat consumption and subsequent risk of type 2 diabetes mellitus: three cohorts of US men and women. JAMA Intern Med 2013;173(14):1328-35.
- [22] Schwingshackl L, et al. Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol 2017;32(5):363-75.
- Tian S, et al. Dietary protein consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Nutrients 2017;9(9).
- [24] Bechthold A, et al. Food groups and risk of coronary heart disease, stroke and heart failure: a systematic review and dose-response meta-analysis of prospective studies. Crit Rev Food Sci Nutr 2017:1–20.
- Schwingshackl L, et al. Food groups and risk of hypertension: a systematic review and dose-response meta-analysis of prospective studies. Adv Nutr 2017;8(6):793-803.
- Yang C, et al. Red meat consumption and the risk of stroke: a dose-response meta-analysis of prospective cohort studies. J Stroke Cerebrovasc Dis 2016;25(5):1177-86
- Kim K, et al. Role of total, red, processed, and white meat consumption in stroke incidence and mortality: a systematic review and meta-analysis of prospective cohort studies. J Am Heart Assoc 2017;6(9).
- Wang X, et al. Red and processed meat consumption and mortality: doseresponse meta-analysis of prospective cohort studies. Publ Health Nutr 2016;19(5):893-905.

- [29] Schwingshackl L, et al. Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 2017;105(6):1462-73.
- [30] 4. Lifestyle management: standards of medical Care in Diabetes-2018. Diabetes Care 2018;41(Suppl 1):S38-50.
- [31] Mann JI, et al. Evidence-based nutritional approaches to the treatment and prevention of diabetes mellitus. Nutr Metabol Cardiovasc Dis 2004:14(6):
- [32] Higgins JPT, Green S, editors. Cochrane Handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. The Cochrane Collaboration: 2011. Available from, www.cochrane-handbook.org
- [33] Moher D, et al. Preferred reporting items for systematic reviews and metaanalyses: the PRISMA statement. PLoS Med 2009;6(7). e1000097.
- [34] Moher D, et al. Preferred reporting items for systematic review and metaanalysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015;4:1.

 [35] Kahleova H, et al. Vegetarian diet improves insulin resistance and oxidative
- stress markers more than conventional diet in subjects with Type 2 diabetes. Diabet Med 2011;28(5):549-59.
- Lane DM. Online statistics education: a multimedia course of study [cited 2014 April 14]. Available from: http://onlinestatbook.com/
- [37] Luo D, et al. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Meth Med Res 2018;27(6):1785-805.
- Elbourne DR, et al. Meta-analyses involving cross-over trials: methodological issues. Int J Epidemiol 2002;31(1):140-9.
- [39] Thompson SG, Higgins J. How should meta-regression analyses be undertaken and interpreted? Stat Med 2002;21(11):1559-73.
- Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to metaanalysis. Chichester: Wiley; 2008.
- [41] Sterne JA, Gavaghan D, Egger M. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol 2000;53(11):1119-29.
- Guyatt G, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 2011;64(4):383-94
- Guyatt GH, et al. GRADE guidelines: 2. Framing the question and deciding on important outcomes. J Clin Epidemiol 2011;64(4):395-400.
- Viguiliouk E, et al. Effect of tree nuts on glycemic control in diabetes: a systematic review and meta-analysis of randomized controlled dietary trials. PLoS One 2014;9(7). e103376.
- Guyatt GH, et al. GRADE guidelines: 4. Rating the quality of evidence-study limitations (risk of bias). J Clin Epidemiol 2011;64(4):407-15.
- Brunetti M, et al. GRADE guidelines: 10. Considering resource use and rating the quality of economic evidence. J Clin Epidemiol 2013;66(2):140-50.
- Guyatt GH, et al. GRADE guidelines 6. Rating the quality of evidenceimprecision. J Clin Epidemiol 2011;64(12):1283-93.
- [48] Guyatt GH, et al. GRADE guidelines: 7. Rating the quality of evidence--inconsistency. J Clin Epidemiol 2011;64(12):1294-302.
- et al. GRADE guidelines: 5. Rating the [49] Guyatt GH, evidence-publication bias. J Clin Epidemiol 2011;64(12):1277-82
- [50] Guyatt GH, et al. GRADE guidelines: 8. Rating the quality of evidence--indirectness. J Clin Epidemiol 2011;64(12):1303-10.
- Guyatt GH, et al. GRADE guidelines: 9. Rating up the quality of evidence. J Clin Epidemiol 2011;64(12):1311-6.
- [52] Guyatt G, et al. GRADE guidelines: 11. Making an overall rating of confidence in effect estimates for a single outcome and for all outcomes. J Clin Epidemiol 2013;66(2):151-7
- [53] Guyatt GH, et al. GRADE guidelines: 12. Preparing summary of findings tablesbinary outcomes. J Clin Epidemiol 2013;66(2):158-72.
- [54] Guyatt GH, et al. GRADE guidelines: 13. Preparing summary of findings tables and evidence profiles-continuous outcomes. J Clin Epidemiol 2013;66(2):
- [55] Kontessis PA, et al. Renal, metabolic, and hormonal responses to proteins of different origin in normotensive, nonproteinuric type I diabetic patients. Diabetes Care 1995;18(9):1233.
- [56] Nicholson AS, et al. Toward improved management of NIDDM: a randomized, controlled, pilot intervention using a lowfat, vegetarian diet. Prev Med 1999;29(2):87-91.
- [57] Wheeler ML, et al. Animal versus plant protein meals in individuals with type 2 diabetes and microalbuminuria: effects on renal, glycemic, and lipid parameters. Diabetes Care 2002;25(8):1277-82.
- [58] de Mello VD, et al. Withdrawal of red meat from the usual diet reduces albuminuria and improves serum fatty acid profile in type 2 diabetes patients with macroalbuminuria. Am J Clin Nutr 2006;83(5):1032-8.
- [59] Barnard ND, et al. A low-fat vegan diet and a conventional diabetes diet in the treatment of type 2 diabetes: a randomized, controlled, 74-wk clinical trial. Am J Clin Nutr 2009;89(5):1588S-96S.
- [60] Mishra S, et al. A multicenter randomized controlled trial of a plant-based nutrition program to reduce body weight and cardiovascular risk in the corporate setting: the GEICO study. Eur J Clin Nutr 2013;67(7):718-24.
- Lee YM, et al. Effect of a brown rice based vegan diet and conventional diabetic diet on glycemic control of patients with Type 2 diabetes: a 12-week randomized clinical trial. PLoS One 2016;11(6). e0155918.
- [62] Barnard ND, et al. Turning the waiting room into a classroom: weekly classes using a vegan or a portion-controlled eating plan improve diabetes control in a randomized translational study. J Acad Nutr Diet 2018.

- 4 5 6
- 7 8 9
- 10

12

13

14

15

16

17

18

19

20

- 23

21

22

- 24
- 25 26
- - 27 28 29 30
 - 31 32

 - 33 34
- 35 36 37 38

40

39

- [63] Kendall A, et al. Weight loss on a low-fat diet: consequence of the imprecision of the control of food intake in humans. Am J Clin Nutr 1991;53(5):1124-9. Howarth NC, Saltzman E, Roberts SB. Dietary fiber and weight regulation. Nutr
- Rev 2001;59(5):129-39.
- Canadian Diabetes Association Clinical Practice Guidelines Expert, C, et al. Nutrition therapy. Can J Diabetes 2013;37(Suppl 1):S45-55.
- Kahleova H, Pelikanova T. Vegetarian diets in the prevention and treatment of type 2 diabetes. J Am Coll Nutr 2015;34(5):448-58.
- Barnard ND, et al. Vegetarian and vegan diets in type 2 diabetes management. Nutr Rev 2009;67(5):255-63.
- Viguiliouk E. et al. Effect of replacing animal protein with plant protein on glycemic control in diabetes: a systematic review and meta-analysis of randomized controlled trials. Nutrients 2015;7(12):9804-24.
- [69] Porta N, Bonet C, Cobo E. Discordance between reported intention-to-treat and per protocol analyses. J Clin Epidemiol 2007;60(7):663-9.
- [70] Center for Drug Evaluation and Research, Guidance for industry: diabetes mellitus: developing drugs and therapeutic biologics for treatment and prevention (Draft guidance). Silver Spring, MD, USA: U.S. Department of Health and Human Services Food and Drug Administration; 2008. p. 1–30.
- Ray KK, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet 2009;373(9677):1765–72.
- Mannucci E, et al. Prevention of cardiovascular disease through glycemic control in type 2 diabetes: a meta-analysis of randomized clinical trials. Nutr Metabol Cardiovasc Dis 2009;19(9):604-12.

- [73] Turnbull FM, et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia 2009;52(11):2288-98.
- Robinson JG, et al. Pleiotropic effects of statins: benefit beyond cholesterol reduction? A meta-regression analysis. J Am Coll Cardiol 2005;46(10): 1855-62.
- [75] Manson JE, et al. The primary prevention of myocardial infarction. N Engl J Med 1992;326(21):1406-16.
- [76] Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998;339(4): 229-34.
- [77] Melina V, Craig W, Levin S. Position of the academy of nutrition and dietetics: vegetarian diets. J Acad Nutr Diet 2016;116(12):1970-80.
- Trapp CB, Barnard ND. Usefulness of vegetarian and vegan diets for treating type 2 diabetes. Curr Diabetes Rep 2010;10(2):152–8.

 Marlow HJ, Hayes W, Soret S, Carter RL, Schwab ER, Sabaté J. Diet and the
- environment: does what you eat matter? Am J Clin Nutr 2009;89(5): 1699S-703S.
- Tilman D, Clark M. Global diets link environmental sustainability and human health. Nature 2014;515(7528):518-22.
- Johnston BC, et al. Comparison of weight loss among named diet programs in overweight and obese adults: a meta-analysis. JAMA 2014;312(9): 923 - 33.