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Introduction
Much of our knowledge about the relationship between
lipid and lipoprotein metabolism and development of
atherosclerosis and cardiovascular disease is based on
measurements in the fasting state. Although such
measurements remain the foundation of clinical assess-
ment and an important basis for decisions regarding
hypolipidemic interventions, it should be acknowledged
that we spend a considerable amount of time in a nonfast-
ing, postprandial state. Based on typical American eating
patterns, most people consume three or more meals a day,
with each containing 20 to 70 g of fat [1]. Each of these
meals is most likely consumed before plasma triglycerides
have returned to baseline levels from the lipemic condi-
tions resulting from the previous intake. Thus, humans
spend the majority of their day in a postprandial (fed)

state, with a continual fluctuation in the degree of lipemia
throughout the day. The postprandial state is a dynamic,
nonsteady-state condition, with rapid remodeling of lipo-
proteins compared with the relatively stable fasting condi-
tion. Determination of the postprandial response is
complex, and it is, therefore, more challenging to assess
the cardiovascular risk associated with postprandial
lipemia than during fasting conditions. In spite of this, it
is becoming increasingly evident that future efforts to
study and treat lipids related to atherogenesis should
include postprandial parameters.

Metabolism of Postprandial 
Triglyceride-rich Lipoproteins
Chylomicron production and secretion
Upon digestion and absorption of dietary fat, short- and
medium-chain fatty acids are albumin-bound and
transported directly to the liver. Long-chain fatty acids are
re-esterified into triglycerides (TG) and “packaged” into
large chylomicron (CM) particles in the Golgi complex of
intestinal cells. Assembly and secretion of CM is depen-
dent upon the presence of apolipoprotein (apo) B-48,
which in humans is synthesized only in the intestine [1].
The fasting level of apoB-48 is very low or barely detectable
in most individuals [2,3].

Upon entering the circulation, CMs interact with lipo-
protein lipase (LPL) to hydrolyze TG to monoglycerides
and fatty acids on the surface of endothelial cells, primarily
in adipose and muscle tissue [4]. These hydrolytic products
are either bound to albumin or rapidly taken up by muscle
for oxidation or by adipose tissue for storage [4].

After approximately 90% of the hydrolysis is complete,
the CMs, now designated as CM remnants (CMR), are
released back into the circulation [2]. ApoE is the predomi-
nant protein remaining with the CMR and is important in
mediating the hepatic uptake of these particles [5]. Upon
binding to the receptors, CMR are rapidly internalized via
coated pits on the cell and the particles are subsequently
degraded in the lysosomes [4].

Very low-density lipoprotein metabolism
At least two apparent populations of very low-density
lipoprotein (VLDL) particles, ranging in size from 50 to 70
nm, are secreted by the liver [6]. Secretion of the larger
population, the postprandial VLDL particles, appears to be

Postprandial lipemia, characterized by a rise in triglyceride-
rich lipoproteins after eating, is a dynamic, nonsteady-state 
condition in which humans spend the majority of time. 
There are several lines of evidence suggesting that post-
prandial lipemia increases risk of atherogenesis. Clinical 
data show a correlation between postprandial lipoproteins 
and the presence/progression of coronary artery disease 
and carotid intimal thickness. Mechanistic studies demon-
strate that triglyceride-rich lipoprotein remnants may 
have adverse effects on endothelium and can penetrate 
into the subendothelial space. Exchange of core lipids 
between postprandial lipoproteins and low-density lipo-
protein (LDL)/high-density lipoprotein (HDL) is increased 
during prolonged lipemia, resulting in small, dense LDL 
particles and reduced HDL cholesterol levels. Hemostatic 
variables, including clotting factors, platelet reactivity, and 
monocyte cytokine expression, may be increased during 
postprandial lipemia. Collectively, these data suggest 
that assessment and treatment of atherosclerosis should 
include parameters related to postprandial lipemia.
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regulated by insulin-sensitive mechanisms in the fed state
[5]. The regulation of the second, TG-poorer population of
VLDL is less well characterized. In the postprandial state,
insulin stimulates endothelial LPL to hydrolyze CM, gener-
ating a source of long-chain fatty acids to be shunted to the
liver [7]. De novo synthesis of fatty acids as a source of
hepatic TG for VLDL is not likely a significant source of
fatty acids in humans under normal conditions [3,8••].
Newly synthesized VLDL contains apoB-100, as well as
some apoE and apoC [4,5]. It has been suggested that apoE
plays a role in the synthesis and secretion pathways for
VLDL [9–11]. Upon release into the circulation, VLDL
acquires additional apoE and apoC from circulating HDL
[4,5]. The subsequent metabolism of VLDL follows a path
similar to that of CM, where VLDL competes with CM and
CMR for LPL. However, because VLDL is smaller than CM,
each particle presumably interacts with fewer LPL mole-
cules and is hydrolyzed more slowly. The on-going TG
depletion and concurrent loss of apoE and apoC result in
progressively smaller VLDL (referred to as VLDL remnants)
or intermediate-density lipoproteins (IDL), and ultimately
LDL particles. ApoB-100 remains with the particle until the
final degradation occurs in the hepatocytes.

The competition between intestinal and hepatic triglycer-
ide-rich lipoproteins (TGRL) for the same lipolytic and
receptor-mediated uptake pathways accounts, in part, for the
accumulation of these particles during the postprandial
period [12]. Primarily, endogenous or hepatic TGRL accumu-
late in the plasma after fat intake, presumably due to less
efficient hydrolysis of VLDL by LPL [4,13,14]. At the peak of
postprandial lipemia, the increase in apoB-100–containing
particles is much greater than that of apoB-48–containing
particles, accounting for up to 80% of the increase in particle
number [14]. However, due to the large size of CM and CMR,
approximately 80% of the postprandial rise in TG is
accounted for by apoB-48–containing particles (ie, large
quantities of TG are transported in relatively few large CM
particles). However, the half-life of CM particles and
remnants is variable, and for smaller size particles may be as
long as circulating VLDL of corresponding size [15].

During the postprandial period there is an active
exchange of lipids between circulating lipoproteins [16].
The outcome of the lipid exchange is cholesteryl ester (CE)
enrichment of TGRL at the expense of CE in LDL and high-
density lipoprotein (HDL). The lipid exchange between
lipoproteins during prolonged postprandial lipemia is of
interest because of the relationship between lipoprotein
size, composition, and potential atherogenicity [6,17].

Factors Affecting the Postprandial Response
A variety of factors affect the duration and extent of elevated
TG in the postprandial period. In particular, fasting levels of
plasma TG tend to be correlated with the magnitude of post-
prandial lipemic response [1]. Thus, hypertriglyceridemic
individuals have a fourfold increase in the half-life of

circulating TGRL, particularly those of intestinal origin,
possibly due to a reduction in LPL activity.

Several conditions characterized by elevated TG and
insulin resistance are associated with exaggerated
postprandial lipemia, such as the dyslipidemia that accom-
panies diabetes [18,19]. In a recent study, the degree of
insulin sensitivity was a determinant of postprandial
lipemia among healthy middle-aged men [20]. The mecha-
nisms are not entirely understood but are likely due to
aberrant insulin-mediated suppression of hepatic VLDL
production and fatty-acid release from adipose tissue [5].
The resulting increase in VLDL secretion is associated with
prolonged residence time in the circulation due to
increased competition with intestinal CM for the common
removal pathways, as described earlier.

Obesity is associated with several metabolic abnormal-
ities, including hypertriglyceridemia and hyperinsuline-
mia, that would predict an exaggerated postprandial lipid
response. However, even in the absence of these associated
conditions, obese individuals may have up to three times
higher postprandial TG levels than non-obese control
patients [21]. In a postprandial study of non-obese and
obese subjects, Goldberg et al. [22•] reported a significant
correlation between LPL activity and the postprandial TG
response only among the non-obese subjects. These find-
ings suggest a different relationship between LPL activity
and lipoproteins in obesity.

Protocols for assessing postprandial lipemic response
usually involve administering a fat challenge or test meal
to an individual following an overnight fast and then
obtaining blood samples at hourly or bi-hourly intervals
for 6 to 24 hours afterward. Postprandial lipemia is influ-
enced by the amount and type of dietary fat present in the
test meal, as well as other dietary components including
fiber, glucose, starch, and alcohol [23–25]. Intake of long-
chain omega (n)-3 polyunsaturated fatty acids (predomi-
nantly fish oil), results in lower TG levels and attenuates
postprandial lipemia [26]. The habitual diet of an individ-
ual may also influence the postprandial response [25].

Apart from the habitual diet, the postprandial response
is affected by other lifestyle factors. Exercise has been
shown to blunt the TG response during and after the activ-
ity [27]. In general, participation in regular exercise lowers
fasting TG. The postprandial response to an oral fat load is
lower and clearance rates of TGRL are higher in endurance-
trained individuals compared with untrained control sub-
jects, although this may not be applicable to moderate
exercise [28].

In general, tolerance to oral fat intake decreases with
age [1]. Information on postprandial lipemia in children is
sparse, although in a recent study fasting triacylglycerol
and HDL cholesterol, but not LDL cholesterol levels, pre-
dicted the postprandial response. Interestingly, there was a
significant difference in postprandial response between
children and their mothers in spite of similar baseline
triglyceride levels [29•].
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Gender also plays a role in postprandial lipemia.
Premenopausal women tend to have lower fasting and
postprandial TG levels compared to men [1]. However,
menopause is associated with altered lipid parameters
including increases in fasting TG levels and exaggerated
postprandial lipemia [30]. Hormone replacement therapy
is associated with an increase in triglycerides in parallel
with a decrease in remnant cholesterol levels [31]. These
results suggest that estrogen might induce a shift in the
distribution pattern of triglyceride-rich lipoproteins, with a
decrease of the more atherogenic fractions.

Genetic factors also play a role in the postprandial
response. ApoE isoforms are important determinants of
postprandial lipemia. It has been demonstrated that apoE2
homozygous subjects have the lowest affinity for TGRL-
remnant receptor(s), and this genotype is associated with
delayed postprandial clearance. Compared with apoE3
homozygous patients, apoE4 carriers tend to have
enhanced clearance of remnants [32,33]. Beyond apoE,
other genetic variants have also been shown to influence
postprandial clearance, including apolipoproteins AI and
AIV [34–36].

Several clinical studies have provided evidence that
subjects with diagnosed coronary artery disease (CAD)
have a prolonged postprandial response, as well as higher
TG levels for several hours post-consumption compared
with disease-free control subjects [5,37,38]. The increased
TGRL production in the postprandial period may be inde-
pendent of fasting TG plasma levels in subjects with CAD.

Experimental Evidence Linking Postprandial 
Lipemia with Atherosclerosis
The suggestion of a relationship between specific lipoprotein
classes (including VLDL and IDL) and CAD was proposed
over 50 years ago by Gofman et al. [39]. The extent to which
fasting TG (ie, hepatic VLDL) contributes to the risk of CAD
has been debated and is still unresolved. The potential
atherogenicity of postprandial TG levels and TGRL did not
gain widespread attention until the idea was put forth in a
widely quoted paper by Zilversmit in 1979 [40], who pro-
posed that hydrolysis of CM by LPL resulted in the subse-
quent internalization of CE-enriched CMR by arterial
smooth muscle cells. A confirmation of this hypothesis has
been complicated by the multiple factors impacting the post-
prandial response, the lack of standardized methodology,
and the considerable heterogeneity among postprandial
TRGL species. Evidence supporting an association between
postprandial lipemia and atherosclerosis has been provided
by clinical trials and mechanistic studies of both direct and
indirect effects of TGRL using animal models and cell culture.

Clinical trials
Several clinical studies have shown that delayed elimina-
tion of postprandial TGRL is associated with atherosclero-
sis. There are also reports of an association between

postprandial lipemic response and subsequent progression
of atherosclerosis in patients with pre-existing CAD.

In men, the presence of CAD is associated with higher
postprandial TG concentrations in plasma compared with
healthy controls, even after correction for higher levels of
fasting TG in the CAD group [16,38,41,42]. Subjects with
CAD had higher plasma TG values from 4 to 8 hours com-
pared with control subjects [38], and incremental TG levels
in men with CAD were significantly elevated at 6 and 8
hours postprandially compared with healthy men. The
data are less clear for women. One smaller study reported
elevated postprandial TG and apoB-48 concentrations in
women with coronary artery stenosis [42]. However, a
larger study showed no significant relationship between
prolonged postprandial lipemia and CAD in middle-aged
women [43]. In a number of studies, carotid intimal-
medial thickness (IMT) is used as a surrogate marker for
atherosclerosis [44–46]. Boquist et al. [44] showed that
several postprandial measurements, including total TG
area under the curve and plasma TG levels between 1 and 4
hours, correlated with IMT. Other consistent IMT predic-
tors included LDL cholesterol level and basal proinsulin
levels [44]. Of note, this is one of the few studies to impli-
cate an early postprandial TG level as a predictive factor for
atherosclerosis. Other studies have confirmed a positive
association between carotid IMT and postprandial lipemia
[45,46]. Collectively, studies of IMT are suggestive of a link
between postprandial metabolism and early manifesta-
tions of atherosclerosis. However, these data do not
address the issue of whether prolonged postprandial
lipemia predicts risk of developing CAD or whether the
presence of CAD results in subsequent impairment of post-
prandial TGRL.

In order to address this question, one cross-sectional
study examined postprandial TG levels after consumption
of a high-fat liquid drink in healthy sons of men with
angiographic evidence of severe CAD compared with sons
of control subjects without CAD [47]. In spite of compara-
ble fasting lipids between groups, sons of patients with
CAD had significantly higher plasma TG after 8, 10, and 12
hours postprandially, indicative of delayed clearance of TG.
These data were some of the first to suggest that altered
postprandial lipid metabolism might be associated with
familial risk for CAD. In another study in offspring of
patients with CAD, young males with (case subjects) or
without (control subjects) a paternal history of CAD
underwent a postprandial study. Although no difference in
postprandial TG was found in the groups as whole,
subgroup analysis revealed an increased postprandial
response among cases with a moderate elevation of fasting
triglyceride levels [48].

There is evidence that higher levels of TGRL or their
remnants predict progression of disease in subjects with
established CAD. In The Montreal Heart Study, undertaken
in 335 men and women with moderate to extensive CAD,
the concentration of hepatic TGRL remnants predicted
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progression of atherosclerosis [4]. Plasma levels of VLDL,
IDL, and remnant cholesterol were positively correlated
with angiographically determined progression of lesions in
univariate analysis. IDL concentration was also a signifi-
cant correlate in multivariate analysis. After a 4- to 6-year
follow-up period, CAD-related clinical events were posi-
tively correlated to remnant cholesterol concentrations.
Interestingly, LDL cholesterol concentrations were not
related to either lesion progression or clinical events [4].
However, as the authors pointed out, because estimation of
remnant cholesterol concentration is cumbersome and
may be imprecise, few studies have examined the indepen-
dent effect of TGRL remnants on CAD risk.

In a recent summary of clinical studies of postprandial
lipemia and atherosclerosis, Karpe [5] suggested that
elevated plasma TG measured at late postprandial time
points after fat intake “might reveal a state of fat intoler-
ance linked to an elevated risk of CAD that is under genetic
control and cannot be detected by simple measurement of
fasting plasma triglycerides.” However, additional studies
are needed to determine the effect of specific TGRL
fractions and underlying mechanisms for a link between
postprandial lipemia and atherosclerosis.

Mechanistic evidence
The pathogenesis of the relationship between postprandial
TGRL and CAD remains unclear, but experimental evidence
has provided several plausible mechanisms. Atherogenic
effects may be mediated directly by TGRL particles or compo-
nents of the particles. In addition, indirect mechanisms of
TGRL atherogenicity may be due to metabolic changes asso-
ciated with the presence of postprandial TGRL.

Direct effects of triglyceride-rich lipoproteins
Studies designed to assess the direct atherogenicity of post-
prandial TGRL have focused on characterizing their inter-
action with the arterial endothelium, determining the
ability of postprandial TGRLR to penetrate the endothelial
layer to the subintimal space, and assessing TGRL interac-
tion with monocyte-macrophages and other components
of the developing atherosclerotic lesion.

A variety of in vitro and clinical studies suggest that post-
prandial CM and VLDL are associated with adverse effects
on arterial endothelium. In cell culture studies, TGRL,
particularly postprandial remnants, is directly cytotoxic to
endothelial cells [49]. Notably, HDL protected against the
injury mediated by these particles. Further, TGRL lipolysis
products, including free fatty acids (FFA), may impair endo-
thelial function. Cell culture studies in a porcine pulmonary
artery model showed that presence of FFA enhanced LDL
uptake, suggestive of increased permeability [50]. Increased
permeability was also seen during perfusion of murine arter-
ies with triglyceride-rich emulsions in the presence of LPL
[51]. Lipoprotein lipase is present in normal arterial endo-
thelium as well as in atheroma [52]. Thus, arterial endo-
thelial cells may be exposed to high levels of TGRL products,

particularly FFA, in the postprandial state, although in vivo
the cytotoxicity of FFA may be attenuated by circulating
albumin [53]. However, in cultured endothelial cells, a high
FFA to albumin ratio correlated with an augmented VLDL
toxicity, suggesting that a high FFA concentration may
reduce the protective effect of albumin [53]. Collectively,
these in vitro studies suggest that TGRL and products of
TGRL hydrolysis have the potential to promote endothelial
dysfunction, which is thought to be important in the initia-
tion of atherosclerosis.

Clinical evidence also demonstrates that postprandial
TGRL adversely affects the endothelium by mediating changes
in vascular tone. After consumption of a high-fat meal, a
reduction in flow-induced dilation of the brachial artery corre-
lated with postprandial plasma TG concentration in healthy
subjects [54]. A similar response was seen after infusion of a
lipid emulsion in seven healthy male subjects [55]. Further,
TGRL remnant concentration in healthy subjects correlated
with an impaired epicardial coronary vasomotor response,
and was inversely related to coronary blood flow under fasting
conditions [56]. It has been proposed that TGRL’s effects on
endothelial tone is mediated in part by reduced nitric oxide
production, either because of the TGRL particles themselves or
due to oxidized LDL associated with the postprandial period
[5,56]. Consumption of L-arginine attenuates endothelial
impairment at 4 and 6 hours postprandially, presumably due
to increased availability of nitric oxide [57].

In view of the presence of endothelial dysfunction as an
early event in atherosclerosis [58], evidence from clinical
and basic science studies suggests that TGRL may play a role
in the initiation of atherosclerosis. However, in order to
perpetuate the progression of the disease, TGRL or its con-
tents need to penetrate into and remain in the intimal space
of the arterial wall. Lipoprotein flux into the endothelium
increases in direct proportion to TGRL’s concentration in
plasma and decreases as particle sizes become larger [59].
The exact details of this transport are not completely delin-
eated, and although several possible routes of lipoprotein
transport across the arterial endothelium have been sug-
gested, the primary pathway is thought to be transcytosis
[60,61]. This process involves formation of vesicles on the
luminal surface of arterial endothelial cells, which migrate
to the basolateral surface of arterial endothelial cells, where
their contents are expelled by exocytosis into the subendo-
thelial space [60]. These transcytotic vesicles have been
shown to accommodate lipoproteins up to 70 nm in diame-
ter, which excludes the possibility of transporting unhydro-
lyzed TGRL, such as chylomicrons (75 to 1200 nm), by this
route. However, smaller CM and VLDL remnants (40 to 70
nm) might enter the arterial wall by this mechanism. In
addition, activation of endothelial cells and paracellular
pathways may allow entrance of larger-sized particles.

Animal studies provide evidence for influx and
selective retention of CMR and VLDL. Endogenously radio-
iodinated CMR [62] or fluorescently labeled CMR
(rhodamine-succinimidyl ester) [63] were perfused
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through in situ rabbit coronary arteries. CMR associated
with the arterial tissue within 5 minutes of exposure, possi-
bly due to transcytosis. Further, arterial efflux of CMR was
incomplete, with focal accumulation of these lipoproteins
in the subintimal space.

Several lines of evidence suggest that TGRL particles
smaller than CM such as VLDL and VLDL remnants can
access the arterial intima. A dual isotope method was used
to demonstrate influx of radiolabeled VLDL, IDL, and LDL
into healthy and lesioned arterial intima of hypercholester-
olemic rabbits [64]. There was an inverse relationship
between lipoprotein diameter and fractional loss from the
arterial intima (ie, a combination of efflux back into the
arterial lumen, degradation of the particles, or irreversible
attachment of lipoproteins to arterial wall components)
[64]. VLDL, VLDL remnants, IDL, and also LDL were more
likely to be “trapped” in the arterial intimal and inner
medial areas than smaller particles such as HDL.

It is intriguing that the presence of VLDL- and IDL-
sized particles has been reported in human intima as well
as in atherosclerotic plaque. Rapp et al. [65] used selective
affinity immunosorption to directly examine human aortic
plaque for the presence of apoB-100–containing TGRL
[65]. The plaque samples were found to contain VLDL and
IDL with a lipid composition similar to the corresponding
plasma lipoproteins, suggesting that TGRL can enter and
be retained in atherosclerotic plaque.

The assessment of a direct effect of postprandial TGRL
on atherogenic mechanisms also relates to the nature of
their interaction with components in the intimal space.
Incubation of macrophages with CM and large VLDL from
hypertriglyceridemic subjects resulted in conversion into
cells resembling foam cells in atherosclerotic lesions [66].
Furthermore, significant increases in macrophage TG and
CE content have been observed after 4-hour incubation
with TGRL. In addition, surface remnants of TGRL hydro-
lysis were shown to be cytotoxic to macrophages, although
this effect could be inhibited by the addition of HDL to the
media [37].

Indirect effects of triglyceride-rich lipoproteins
In addition to the possibility of direct effects of postprandial
TGRL, there is mounting evidence that metabolic changes
occurring during prolonged or elevated postprandial
lipemia may be proatherogenic. Of particular interest is
TGRL-mediated modification in LDL composition and size.

Lipoprotein modification
In the postprandial period, there is an enhanced exchange
of core lipids between circulating lipoproteins. VLDL is the
predominant TGRL species to become enriched with CE
during this period, possibly due to a prolonged residence
time and opportunity for lipid exchange [14]. In the post-
prandial state, similar to that of hypertriglyceridemic
subjects, it is postulated that the extent of exchange may be
determined by particle residence time in the circulation

[67]. This implies an enhanced exchange in patients with
prolonged postprandial lipemia. The resultant TG-
enriched LDL and HDL particles are subject to lipolysis by
hepatic lipase, thus forming small, dense particles.

Karpe et al. [16] showed that postprandial TGRL levels
and lipoprotein lipase activity accounted for about 50% of
the variability in LDL particle size. The size of circulating
LDL is not acutely affected by the ingestion of a fat-rich meal
[37], but there is a consistent relationship between increased
fasting TG levels, increased postprandial TG, and the pres-
ence of atherogenic small, dense LDL [17]. A detailed analy-
sis of the correlation between fasting plasma TG levels and
LDL subclasses suggests that above a fasting TG level of 132
mg/dL (1.5 mmol/L), small dense LDL is more common
[6]. The relationship between small, dense LDL and plasma
TG has been defined mainly in the fasting state, although
metabolic processes in the postprandial state are important
in the generation of small dense LDL [6].

Small, dense LDL particles appear to be highly athero-
genic by several related mechanisms [6,68]. Prospective
studies confirm that small, dense LDL is highly predictive
of CAD and is present in 40% to 50% of all patients with
CAD in spite of normal fasting-LDL cholesterol levels [6].
In a group of young post-infarction men, apoB-48 levels
correlated with plasma levels of small dense LDL [16].
Another study in diabetic subjects found a higher oxidative
susceptibility of postprandial LDL particles [69]. Postpran-
dial LDL promoted a significantly higher degree of CE
accumulation and was more susceptible to copper-induced
oxidation [69].

High-density lipoprotein effects
The composition and cholesterol concentration of HDL is
inversely related to the magnitude of postprandial lipemia
and the plasma concentration of TG. Lipolysis of TGRL
affects the rate of formation of HDL particles [37]. Another
mechanism for this association may be a postprandial
increase of CETP-mediated CE transfer from HDL to TGRL
[16], proposed to be one of the atherogenic changes medi-
ated by prolonged postprandial lipemia [38].

Hemostatic changes
Postprandial lipemia has been shown to be associated with
changes in hemostatic variables known to promote risk for
thrombotic events [70]. Epidemiologic data have shown
that the coagulation activity of factor VII (FVIIc) predicts
coronary heart disease [71]. Following intake of a fat-rich
meal, FVIIc is transiently increased due to an increase in
plasma concentration of activated FVII, increasing the possi-
bility of initiating a thrombotic response that may increase
the likelihood of a clinically significant thrombosis [70].

Apart from the effect on thrombogenic factors, circulat-
ing postprandial lipoproteins may also impact platelet
reactivity [72]. Although a variety of platelet activation
markers have been studied to determine if platelets are
indeed affected by postprandial lipemia, results are con-
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flicting [73,74]. Recent advances in flow cytometry have
provided the opportunity to more accurately assess platelet
activation by the expression of surface and intracellular
proteins. Using this technology, postprandial lipemia was
associated with a mild increase in platelet reactivity that
increased the expression of cell-surface markers in healthy
men [75,76••]. Furthermore, platelet-monocyte aggrega-
tion and monocyte intracellular cytokine expression were
elevated during the postprandial period and remained
elevated after plasma TG levels returned to baseline [76••].

Conclusions
There is growing evidence that postprandial lipemia is
associated with proatherogenic conditions, and clinical
studies provide evidence that exposure to postprandial
lipoproteins is associated with cardiovascular diseases. The
degree of postprandial lipemia is variable between individ-
uals, and influenced by both genetic and environmental
factors. Recent studies indicate that atherogenicity of post-
prandial lipemia is associated with properties of triglycer-
ide-rich lipoproteins such as their size, composition, and
metabolism, as well as with their secondary effects on
cholesterol-rich lipoproteins, such as LDL and HDL.
Further, postprandial lipemia may mediate a prothrom-
botic state and induce inflammatory changes in the vessel
wall, as well as in circulating leukocytes and platelets.
Although clinical and in vitro data provide convincing
evidence that postprandial lipemia contributes to the risk
of cardiovascular disease, the nature of the association and
underlying mechanisms remain to be established.
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